Extensions 1→N→G→Q→1 with N=C23 and Q=S32

Direct product G=N×Q with N=C23 and Q=S32
dρLabelID
S32×C2348S3^2xC2^3288,1040

Semidirect products G=N:Q with N=C23 and Q=S32
extensionφ:Q→Aut NdρLabelID
C23⋊(S32) = C2×S3×S4φ: S32/S3S3 ⊆ Aut C23186+C2^3:(S3^2)288,1028
C232(S32) = C62.125C23φ: S32/C32C22 ⊆ Aut C2348C2^3:2(S3^2)288,631
C233(S32) = C32⋊2+ (1+4)φ: S32/C32C22 ⊆ Aut C23244C2^3:3(S3^2)288,978
C234(S32) = C2×S3×C3⋊D4φ: S32/C3×S3C2 ⊆ Aut C2348C2^3:4(S3^2)288,976
C235(S32) = C2×Dic3⋊D6φ: S32/C3⋊S3C2 ⊆ Aut C2324C2^3:5(S3^2)288,977

Non-split extensions G=N.Q with N=C23 and Q=S32
extensionφ:Q→Aut NdρLabelID
C23.1(S32) = Dic3.S4φ: S32/S3S3 ⊆ Aut C23726-C2^3.1(S3^2)288,852
C23.2(S32) = Dic3×S4φ: S32/S3S3 ⊆ Aut C23366-C2^3.2(S3^2)288,853
C23.3(S32) = Dic32S4φ: S32/S3S3 ⊆ Aut C23366C2^3.3(S3^2)288,854
C23.4(S32) = Dic3⋊S4φ: S32/S3S3 ⊆ Aut C23366C2^3.4(S3^2)288,855
C23.5(S32) = S3×A4⋊C4φ: S32/S3S3 ⊆ Aut C23366C2^3.5(S3^2)288,856
C23.6(S32) = D6⋊S4φ: S32/S3S3 ⊆ Aut C23366C2^3.6(S3^2)288,857
C23.7(S32) = A4⋊D12φ: S32/S3S3 ⊆ Aut C23366+C2^3.7(S3^2)288,858
C23.8(S32) = C62.31D4φ: S32/C32C22 ⊆ Aut C23244C2^3.8(S3^2)288,228
C23.9(S32) = C62.32D4φ: S32/C32C22 ⊆ Aut C23244C2^3.9(S3^2)288,229
C23.10(S32) = C62.95C23φ: S32/C32C22 ⊆ Aut C2348C2^3.10(S3^2)288,601
C23.11(S32) = C62.98C23φ: S32/C32C22 ⊆ Aut C2348C2^3.11(S3^2)288,604
C23.12(S32) = C62.100C23φ: S32/C32C22 ⊆ Aut C2348C2^3.12(S3^2)288,606
C23.13(S32) = C62.101C23φ: S32/C32C22 ⊆ Aut C2348C2^3.13(S3^2)288,607
C23.14(S32) = C62.111C23φ: S32/C32C22 ⊆ Aut C2348C2^3.14(S3^2)288,617
C23.15(S32) = C62.112C23φ: S32/C32C22 ⊆ Aut C2348C2^3.15(S3^2)288,618
C23.16(S32) = C62.113C23φ: S32/C32C22 ⊆ Aut C2348C2^3.16(S3^2)288,619
C23.17(S32) = C62.117C23φ: S32/C32C22 ⊆ Aut C2348C2^3.17(S3^2)288,623
C23.18(S32) = C62.121C23φ: S32/C32C22 ⊆ Aut C2348C2^3.18(S3^2)288,627
C23.19(S32) = C62.94C23φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.19(S3^2)288,600
C23.20(S32) = C62.97C23φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.20(S3^2)288,603
C23.21(S32) = C62.56D4φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.21(S3^2)288,609
C23.22(S32) = C623Q8φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.22(S3^2)288,612
C23.23(S32) = C62.60D4φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.23(S3^2)288,614
C23.24(S32) = S3×C6.D4φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.24(S3^2)288,616
C23.25(S32) = Dic3×C3⋊D4φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.25(S3^2)288,620
C23.26(S32) = C624D4φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.26(S3^2)288,624
C23.27(S32) = C625D4φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.27(S3^2)288,625
C23.28(S32) = C626D4φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.28(S3^2)288,626
C23.29(S32) = C2×D6.3D6φ: S32/C3×S3C2 ⊆ Aut C2348C2^3.29(S3^2)288,970
C23.30(S32) = C62.99C23φ: S32/C3⋊S3C2 ⊆ Aut C2348C2^3.30(S3^2)288,605
C23.31(S32) = C62.57D4φ: S32/C3⋊S3C2 ⊆ Aut C2348C2^3.31(S3^2)288,610
C23.32(S32) = C62.115C23φ: S32/C3⋊S3C2 ⊆ Aut C2348C2^3.32(S3^2)288,621
C23.33(S32) = C62.116C23φ: S32/C3⋊S3C2 ⊆ Aut C2324C2^3.33(S3^2)288,622
C23.34(S32) = C627D4φ: S32/C3⋊S3C2 ⊆ Aut C2348C2^3.34(S3^2)288,628
C23.35(S32) = C628D4φ: S32/C3⋊S3C2 ⊆ Aut C2324C2^3.35(S3^2)288,629
C23.36(S32) = C624Q8φ: S32/C3⋊S3C2 ⊆ Aut C2348C2^3.36(S3^2)288,630
C23.37(S32) = C2×D6.4D6φ: S32/C3⋊S3C2 ⊆ Aut C2348C2^3.37(S3^2)288,971
C23.38(S32) = C62.6Q8central extension (φ=1)96C2^3.38(S3^2)288,227
C23.39(S32) = C2×Dic32central extension (φ=1)96C2^3.39(S3^2)288,602
C23.40(S32) = C2×D6⋊Dic3central extension (φ=1)96C2^3.40(S3^2)288,608
C23.41(S32) = C2×C6.D12central extension (φ=1)48C2^3.41(S3^2)288,611
C23.42(S32) = C2×Dic3⋊Dic3central extension (φ=1)96C2^3.42(S3^2)288,613
C23.43(S32) = C2×C62.C22central extension (φ=1)96C2^3.43(S3^2)288,615
C23.44(S32) = C22×S3×Dic3central extension (φ=1)96C2^3.44(S3^2)288,969
C23.45(S32) = C22×C6.D6central extension (φ=1)48C2^3.45(S3^2)288,972
C23.46(S32) = C22×D6⋊S3central extension (φ=1)96C2^3.46(S3^2)288,973
C23.47(S32) = C22×C3⋊D12central extension (φ=1)48C2^3.47(S3^2)288,974
C23.48(S32) = C22×C322Q8central extension (φ=1)96C2^3.48(S3^2)288,975

׿
×
𝔽