extension | φ:Q→Aut N | d | ρ | Label | ID |
C23.1(S32) = Dic3.S4 | φ: S32/S3 → S3 ⊆ Aut C23 | 72 | 6- | C2^3.1(S3^2) | 288,852 |
C23.2(S32) = Dic3×S4 | φ: S32/S3 → S3 ⊆ Aut C23 | 36 | 6- | C2^3.2(S3^2) | 288,853 |
C23.3(S32) = Dic3⋊2S4 | φ: S32/S3 → S3 ⊆ Aut C23 | 36 | 6 | C2^3.3(S3^2) | 288,854 |
C23.4(S32) = Dic3⋊S4 | φ: S32/S3 → S3 ⊆ Aut C23 | 36 | 6 | C2^3.4(S3^2) | 288,855 |
C23.5(S32) = S3×A4⋊C4 | φ: S32/S3 → S3 ⊆ Aut C23 | 36 | 6 | C2^3.5(S3^2) | 288,856 |
C23.6(S32) = D6⋊S4 | φ: S32/S3 → S3 ⊆ Aut C23 | 36 | 6 | C2^3.6(S3^2) | 288,857 |
C23.7(S32) = A4⋊D12 | φ: S32/S3 → S3 ⊆ Aut C23 | 36 | 6+ | C2^3.7(S3^2) | 288,858 |
C23.8(S32) = C62.31D4 | φ: S32/C32 → C22 ⊆ Aut C23 | 24 | 4 | C2^3.8(S3^2) | 288,228 |
C23.9(S32) = C62.32D4 | φ: S32/C32 → C22 ⊆ Aut C23 | 24 | 4 | C2^3.9(S3^2) | 288,229 |
C23.10(S32) = C62.95C23 | φ: S32/C32 → C22 ⊆ Aut C23 | 48 | | C2^3.10(S3^2) | 288,601 |
C23.11(S32) = C62.98C23 | φ: S32/C32 → C22 ⊆ Aut C23 | 48 | | C2^3.11(S3^2) | 288,604 |
C23.12(S32) = C62.100C23 | φ: S32/C32 → C22 ⊆ Aut C23 | 48 | | C2^3.12(S3^2) | 288,606 |
C23.13(S32) = C62.101C23 | φ: S32/C32 → C22 ⊆ Aut C23 | 48 | | C2^3.13(S3^2) | 288,607 |
C23.14(S32) = C62.111C23 | φ: S32/C32 → C22 ⊆ Aut C23 | 48 | | C2^3.14(S3^2) | 288,617 |
C23.15(S32) = C62.112C23 | φ: S32/C32 → C22 ⊆ Aut C23 | 48 | | C2^3.15(S3^2) | 288,618 |
C23.16(S32) = C62.113C23 | φ: S32/C32 → C22 ⊆ Aut C23 | 48 | | C2^3.16(S3^2) | 288,619 |
C23.17(S32) = C62.117C23 | φ: S32/C32 → C22 ⊆ Aut C23 | 48 | | C2^3.17(S3^2) | 288,623 |
C23.18(S32) = C62.121C23 | φ: S32/C32 → C22 ⊆ Aut C23 | 48 | | C2^3.18(S3^2) | 288,627 |
C23.19(S32) = C62.94C23 | φ: S32/C3×S3 → C2 ⊆ Aut C23 | 48 | | C2^3.19(S3^2) | 288,600 |
C23.20(S32) = C62.97C23 | φ: S32/C3×S3 → C2 ⊆ Aut C23 | 48 | | C2^3.20(S3^2) | 288,603 |
C23.21(S32) = C62.56D4 | φ: S32/C3×S3 → C2 ⊆ Aut C23 | 48 | | C2^3.21(S3^2) | 288,609 |
C23.22(S32) = C62⋊3Q8 | φ: S32/C3×S3 → C2 ⊆ Aut C23 | 48 | | C2^3.22(S3^2) | 288,612 |
C23.23(S32) = C62.60D4 | φ: S32/C3×S3 → C2 ⊆ Aut C23 | 48 | | C2^3.23(S3^2) | 288,614 |
C23.24(S32) = S3×C6.D4 | φ: S32/C3×S3 → C2 ⊆ Aut C23 | 48 | | C2^3.24(S3^2) | 288,616 |
C23.25(S32) = Dic3×C3⋊D4 | φ: S32/C3×S3 → C2 ⊆ Aut C23 | 48 | | C2^3.25(S3^2) | 288,620 |
C23.26(S32) = C62⋊4D4 | φ: S32/C3×S3 → C2 ⊆ Aut C23 | 48 | | C2^3.26(S3^2) | 288,624 |
C23.27(S32) = C62⋊5D4 | φ: S32/C3×S3 → C2 ⊆ Aut C23 | 48 | | C2^3.27(S3^2) | 288,625 |
C23.28(S32) = C62⋊6D4 | φ: S32/C3×S3 → C2 ⊆ Aut C23 | 48 | | C2^3.28(S3^2) | 288,626 |
C23.29(S32) = C2×D6.3D6 | φ: S32/C3×S3 → C2 ⊆ Aut C23 | 48 | | C2^3.29(S3^2) | 288,970 |
C23.30(S32) = C62.99C23 | φ: S32/C3⋊S3 → C2 ⊆ Aut C23 | 48 | | C2^3.30(S3^2) | 288,605 |
C23.31(S32) = C62.57D4 | φ: S32/C3⋊S3 → C2 ⊆ Aut C23 | 48 | | C2^3.31(S3^2) | 288,610 |
C23.32(S32) = C62.115C23 | φ: S32/C3⋊S3 → C2 ⊆ Aut C23 | 48 | | C2^3.32(S3^2) | 288,621 |
C23.33(S32) = C62.116C23 | φ: S32/C3⋊S3 → C2 ⊆ Aut C23 | 24 | | C2^3.33(S3^2) | 288,622 |
C23.34(S32) = C62⋊7D4 | φ: S32/C3⋊S3 → C2 ⊆ Aut C23 | 48 | | C2^3.34(S3^2) | 288,628 |
C23.35(S32) = C62⋊8D4 | φ: S32/C3⋊S3 → C2 ⊆ Aut C23 | 24 | | C2^3.35(S3^2) | 288,629 |
C23.36(S32) = C62⋊4Q8 | φ: S32/C3⋊S3 → C2 ⊆ Aut C23 | 48 | | C2^3.36(S3^2) | 288,630 |
C23.37(S32) = C2×D6.4D6 | φ: S32/C3⋊S3 → C2 ⊆ Aut C23 | 48 | | C2^3.37(S3^2) | 288,971 |
C23.38(S32) = C62.6Q8 | central extension (φ=1) | 96 | | C2^3.38(S3^2) | 288,227 |
C23.39(S32) = C2×Dic32 | central extension (φ=1) | 96 | | C2^3.39(S3^2) | 288,602 |
C23.40(S32) = C2×D6⋊Dic3 | central extension (φ=1) | 96 | | C2^3.40(S3^2) | 288,608 |
C23.41(S32) = C2×C6.D12 | central extension (φ=1) | 48 | | C2^3.41(S3^2) | 288,611 |
C23.42(S32) = C2×Dic3⋊Dic3 | central extension (φ=1) | 96 | | C2^3.42(S3^2) | 288,613 |
C23.43(S32) = C2×C62.C22 | central extension (φ=1) | 96 | | C2^3.43(S3^2) | 288,615 |
C23.44(S32) = C22×S3×Dic3 | central extension (φ=1) | 96 | | C2^3.44(S3^2) | 288,969 |
C23.45(S32) = C22×C6.D6 | central extension (φ=1) | 48 | | C2^3.45(S3^2) | 288,972 |
C23.46(S32) = C22×D6⋊S3 | central extension (φ=1) | 96 | | C2^3.46(S3^2) | 288,973 |
C23.47(S32) = C22×C3⋊D12 | central extension (φ=1) | 48 | | C2^3.47(S3^2) | 288,974 |
C23.48(S32) = C22×C32⋊2Q8 | central extension (φ=1) | 96 | | C2^3.48(S3^2) | 288,975 |